1. High Parasite Diversity Accelerate Host Adaptation and Diversification. A.Betts, C. Gray, M.Zelek, R.C MacLean* and K.C. King. Science (in press)
  2. Identifying and exploiting genes that potentiate the evolution of antibiotic resistance. D. Gifford*, V. Furió*, A. Papkou, T.Vogwill, A.Oliver and R.C. MacLean. Nature Ecology and Evolution (in press)
  3. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. J. Rodriguez-Beltran,J.C.R. Hernandez-Beltran, J. DelaFuente, J.A. Escudero, A. Fuentes-Hernandez, R.C MacLean, R. Peña-Miller and A. San Millan. Nature Ecology and Evolution (2018) doi:10.1038/s41559-018-0529-z [Link]
  4. Cooperation, competition and antibiotic resistance in bacterial colonies. I. Frost, W.P. J. Smith, S. Mitri, A.San Millan, Y. Davit, J.M. Osborne, J.M. Pitt-Francis, R.C MacLean*, and K. R. Foster*. ISME Journal (2018) doi:10.1038/s41396-018-0090-4 [Link]
  5. Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Yang, L. Mei, O.Spiller, D.Andrey, P. Hincliffe, C. MacLean, P. Niumsup, L. Powell, M. Pritchard, A. Papkou, Y. Shen, E. Portal, K. Sands, J. Spencer, U. Tansawai, D. Thomas, S. Wang, Y. Wang, J. Shen, T. Walsh and H.Li. Nature Communications (2017) doi:10.1038/s41467-017-02149-0 [Link]
  6. The Search for ‘Evolution-Proof’ Antibiotics. G Bell and R.C. MacLean.Trends in Microbiology (in press)
  7. Fitness Costs of Plasmids: A Limit to Plasmid Transmission. A. San Millan and R.C MacLean Microbiology Spectrum (2017) doi:10.1128/microbiolspec.MTBP-0016-2017 [Link]
  8. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. A. San Millan, J.A Escudero*, D.Gifford*, D. Mazel and R.C MacLeanNature Ecology and Evolution (2016) DOI:10.1038/s41559-016-0010 [Link] [Nature Microbiology Comment][Faculty of 1000][Behind the paper]
  9. Divergent evolution peaks under intermediate Population Bottlenecks during bacterial Experimental Evolution. T. Vogwill, R.L Phillips, D. Gifford and R.C MacLean.  Proceedings of the Royal Society of London B (2016) DOI: 10.1098/rspb.2016.0749 [Link]
  10. The genomic basis of evolutionary innovation in Pseudomonas aeruginosa. M.Toll-Riera, A. San Millan, A. Wagner and R. C MacLean. PLOS Genetics (2016) doi:10.1371/journal.pgen.1006005 [How did birds get their wings? Experiments with bacteria may provide clues say scientists]
  11. Parasite Diversity Drives Rapid Host Dynamics And Evolution Of Resistance In A Bacteria-Phage System. A. Betts, D. Gifford, R.C MacLean and K. King. . Evolution (2016) DOI: 10.1111/evo.12909 [Link]
  12. Persistence and resistance as complementary bacterial adaptations to antibiotics. T. Vogwill, A. Comfort and R. C MacLean. Journal of Evolutionary Biology (2016) DOI:10.1111/jeb.12864 [Link]
  13.  Epistatic interactions between ancestral genotype and beneficial mutations shape evolvability in rifampicin resistant Pseudomonas aeruginosaD.Gifford, M. Toll-Riera and R. C MacLean. Evolution (2016) DOI: 10.1111/evo.12958 [Link]
  14. Epistasis between antibiotic resistance mutations and genetic background shape the fitness effect of resistance across species of Pseudomonas.T. Vogwill, M. Kojadinovic and R.C MacLean.  Proceedings of the Royal Society of London B  (2016) DOI: 10.1098/rspb.2016.0151 [Link]
  15. Environmental variation alters the fitness effects of rifampicin resistance mutations in Pseudomonas aeruginosa. D. Gifford, E. Moss and R.C MacLean. . Evolution (2016) DOI: 10.1111/evo.12880 [Link]
  16. The genomic basis of adaptation to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Q. Qi, M. Toll-Riera, K. Heilbron , G.M Preston and R.C MacLean. Proceedings of the Royal Society of London B (2016) DOI: 10.1098/rspb.2015.2452 [Link][Der Standard]
  17. [Link]
  18. Microbial Evolution: Towards Resolving the Plasmid Paradox (Dispatch). R.Craig MacLean and A. San Millan. . Current Biology  (2015) 25 R764–R767 doi:10.1016/j.cub.2015.07.006 [Link]
  19. Sequencing of plasmids PAMBL-1 and PAMBL-2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance. A. San Millan, M. Toll-Riera, J. Escudero, R. Canton, T.Coque and R.C MacLean. Journal of Antimicrobial Chemotherapy (2015) doi: 10.1093/jac/dkv222 [Link]
  20.  Evaluating the effect of horizontal transmission on the stability of plasmids under different selection regimes. R. Peña-Miller, R. Rodríguez-González, R. C. MacLean and A. San Millan.Mobile Genetic Elements (2015) 5(3) 1-5 doi:10.1080/2159256X.2015.1045115 [Link]
  21. Here’s to the losers: evolvable residents accelerate the evolution of high fitness invaders. D.Gifford, Macarena Toll-Riera, Mila Kojadinovic and R.C. MacLean.  American Naturalist (2015) 186(1) 41-9 doi: 10.1086/681598 [Link]
  22. Interactions between horizontally acquired genes create a fitness cost in Pseudomonas aeruginosa. A. San Millan, M. Toll-Riera, Q. Qi and R.C. MacLean.  Nature Communications (2015) 6, doi:10.1038/ncomms7845 [Link]
  23. Limits to compensatory adaptation and the persistence of antibiotic resistance in pathogenic bacteriaR.C MacLean and T. Vogwill. Evolution, Medicine and Public Health (2015) doi:10.1093/emph/eou032 [Link]
  24. Linking system-wide impacts of RNA polymerase mutations to the fitness cost of rifampicin resistance in Pseudomonas aeruginosa. Q, Qi, G. Preston and R.C. MacLean. mBio (2014) 5, doi: 10.1128/mBio.01562-14 [Link]
  25. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmidsA. San Millan*, R.Peña-Miller*, M. Toll-Riera, Z.Halbert, A.McLean, B.Cooper and R.C MacLean. Nature Communications (2014) 5, doi:10.1038/ncomms6208. [Link] [Nature Microbiology Comment]
  26. Testing the role of genetic background in parallel evolution using the comparative experimental evolution of antibiotic resistance. T. Vogwill, M. Kojadinovic, V. Furió and R.C. MacLean. Molecular Biology and Evolution (2014) doi: 10.1093/molbev/msu262 [Link]
  27. The genetic basis of the fitness cost of antimicrobial resistance: a meta-analysis approach. T. Vogwill and R. C. MacLean. Evolutionary Applications (2014) doi:10.1111/eva.12202 [Link]
  28. Fitness is strongly influenced by rare mutations of large effect in a microbial mutation accumulation experiment. K.Heilbron, M. Toll-Riera, M. Kojadinovic and R.C MacLean. Genetics (2014) 197:981-990. [Link]
  29.  Sex drives intragenomic conflict in yeast. E.Harrison, V. Koufopannou, R.C. MacLean and A.Burt. Journal of Evolutionary Biology (2014) 27:1757-1763. [Link]
  30. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations. A. San Millan, Karl Heilbron and R.C. MacLean. ISME Journal. doi: 10.1038/ismej.2013.182. [Link]
  31. D.R. Gifford and R.C. MacLean. Evolutionary reversals of antibiotic resistance in experimental populations of Pseudomonas aeruginosa. Evolution (2013) 67:2973-2981. [Link]
  32. Evaluating models of stress-induced mutagenesis in bacteria. R.C. MacLean, C. Torres-Barceló and R. Moxon. Nature Reviews Genetics (2013) 14:221-227. [Link] [Faculty of 1000]
  33. A trade-off between oxidative stress resistance and DNA repair plays a role in the evolution of elevated mutation rates in bacteria. C. Torres-Barceló, G.Cabot, A.Oliver, A. Buckling and R.C. MacLean. Proceedings of the Royal Society of London B Series B (2013) 280:1757 20130007. [Link]
  34. The cost of copy number in a selfish genetic element: the 2-µm plasmid of Saccharomyces cerevisiae. E. Harrison, V. Koufopannou, A. Burt and R.C. MacLean. Journal of Evolutionary Biology (2012) 11:2348-2356. [Link]
  35. Epistasis buffers the fitness effects of rifampicin resistance mutations. A. Hall and R.C. MacLean.  Evolution (2011) 65:2370-2379. [Link]
  36. The fitness cost of rifampicin resistance in Pseudomonas aeruginosa depends on demand for RNA polymerase. A.Hall, J. Iles, and R.C. MacLean. Genetics (2011) 187: 817-822 [Link]
  37. Diminishing Returns from Beneficial Mutations and Pervasive Epistasis Shape the Fitness Landscape for Rifampicin Resistance in Pseudomonas aeruginosaR.C. MacLean, G.G. Perron, and A. Gardner. Genetics (2010) 186:1-10. [Link]
  38. A Mixture of “Cheats” and “Co-Operators” Can Enable Maximal Group Benefit. R.C. MacLean*, A. Fuentes-Hernandez* , D. Greig , L.D Hurst LD, and I. Gudelj. PLoS Biology (2010) 8: e1000486. [Link]
  39. The population genetics of antibiotic resistance: integrating molecular mechanisms and treatment context. R.C. MacLean, A. Hall, G. Perron, and A. Buckling. Nature Reviews Genetics (2010) 11:405-414. [Link]
  40. Predicting epistasis: an experimental test of metabolic control theory with bacterial transcription and translation. R.C. MacLean. Journal of Evolutionary Biology (2010) 23(3)488-493. [Link]
  41. Mutational Neighbourhood and Mutation Supply Rate Constrain Adaptation in Pseudomonas aeruginosa. A.Hall, V. Griffiths, R.C MacLean* and N.Colegrave*. . Proceedings of the Royal Society of London Series B (2010) 277(1681) 643-650 [Link]
  42. The cost of multiple drug resistance in Pseudomonas aeruginosa. H. Ward, G.G. Perron, and R.C. MacLean .. Journal of Evolutionary Biology (2009) 22(5)997-1003. [Link]
  43.  The distribution of fitness effects of beneficial mutations in Pseudomonas aeruginosa. R. C. MacLean and A. Buckling. PLoS Genetics (2009) 5(3): e1000406. [Link]
  44. The Beagle in a bottle. A. Buckling, R.C. MacLean, M. Brockhurst, and N. Colegrave Nature (2009) 457:824-829. [Link]
  45. Stable public goods cooperation and dynamic social interactions in yeast.R.C. MacLean and C. Brandon.  Journal of Evolutionary Biology (2008) 21(6): 1836-1843. [Link]
  46. Diversity and productivity peak at intermediate dispersal rate in evolving metacommunities. P.A. Venail*, R.C. MacLean*, T. Bouvier, M. Brockhurst, M.E. Hochberg, and N. Mouquet.  Nature (2008) 452:210-214. [Link] [Faculty of 1000]
  47.  The tragedy of the commons in microbial populations: insights from theoretical, comparative and experimental studies. R.C MacLean. Heredity (2008) 100:233-239.[Link]
  48. Constraints on microbial metabolism drive evolutionary diversification in homogeneous environments. I. Gudelj, R.E. Beardmore, S. Arkin, and R.C. MacLean. Journal of Evolutionary Biology (2007) 20(5):1882-1889.[Link] [Faculty of 1000]
  49. Pleiotropy and GAL pathway degeneration in yeast. R.C MacLean Journal of Evolutionary Biology (2007) 20 (4): 1333–1338. [Link]
  50. Resource competition and social conflict in experimental populations of yeast. R.C MacLean and I. Gudelj. Nature (2006) 441:498-501. [Link] [Faculty of 1000]
  51. Mutations of intermediate effect are responsible for adaptation in evolving populations of Pseudomonas fluorescens. R.D.H. Barrett, R.C. MacLean, and G. Bell.  Biology Letters (2006) 2:236-238. [Link]
  52. Experimental evolution of Pseudomonas fluorescens in simple and complex environments.R.D.H Barrett, R.C. MacLean, and G. Bell. American Naturalist (2005) 166:470-480. [Link] [Faculty of 1000]
  53. Adaptive radiation in microbial microcosms. R.C MacLean. Journal of Evolutionary Biology (2005)18:1376-86. [Link]
  54. Resource competition and adaptive radiation in a microbial microcosm.R.C. MacLean, A. Dickson, and G. Bell. Ecology Letters (2005) 8:36-46. [Link] [Faculty of 1000]
  55. The evolution of a pleiotropic fitness trade-off in Pseudomonas fluorescens. R.C. MacLean, P.B Rainey, and G. Bell. Proceedings of the National Academy of Sciences of the USA (2004) 101:8072-8077. [Link] [Faculty of 1000]
  56. Divergent evolution during an experimental adaptive radiation. R.C MacLean and G. Bell. Proceedings of the Royal Society of London Series B (2003) 270:1645-1650. [Link]
  57.  An Experimental Test of Local Adaptation in Soil Bacteria. D. Bélotte, J-B. Curien, R.C. MacLean, and G. Bell., Evolution (2003) 57:27-36. [Link]
  58.  Experimental Adaptive Radiation in Pseudomonas. R.C. MacLean and G. Bell. American Naturalist (2002) 160:569-581. [Link]